

Integrated CFD Tools in GRASP for Hypersonic Aerothermodynamic Analyses

Overview

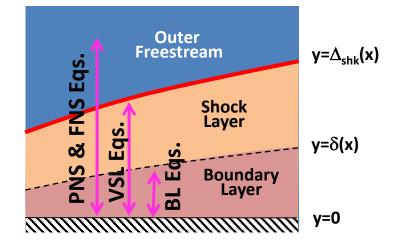
Bilal Bhutta, AeroTe<mark>chnologies, I</mark>nc. January <mark>2016</mark>

Overview

AeroTechnologies Inc Overview

- AeroTechnologies Inc was founded in 1992
 - Small minority owned business
 - Based out of Yorktown, VA.
 - AeroTechnologies, Inc., is a highly focused company, specializing in providing engineering support services for Computational Aero-Thermochemical problems in high-speed flows
 - > We strictly interface with only recognized US entities within the USA

Hierarchy of Flowfield Formulations


Viscous Fluxes

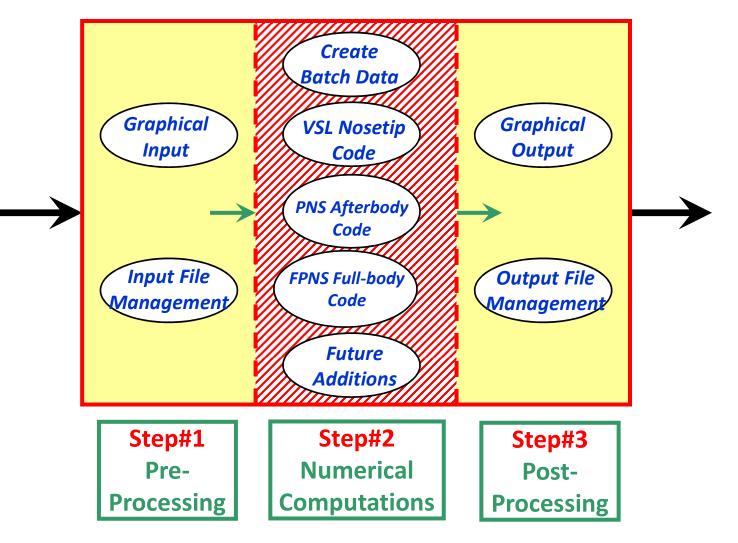
• Governing Equations

$$\frac{\partial \overrightarrow{F_x}}{\partial x} + \frac{\partial \overrightarrow{F_y}}{\partial y} = \left(\frac{M_{\infty}}{Re_{\infty}}\right) \left(\frac{\partial \overrightarrow{S_x}}{\partial x} + \frac{\partial \overrightarrow{S_y}}{\partial y}\right)$$

Convective Fluxes

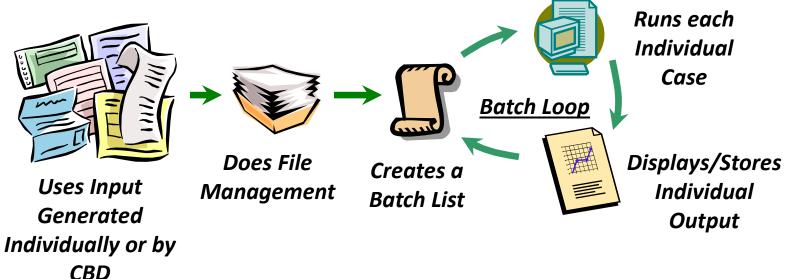
• <u>Inviscid</u> Formulation: $\frac{\partial \overline{S_x}}{\partial x} = \frac{\partial \overline{S_y}}{\partial y} = 0$

- **<u>Boundary-Layer</u>**(BL) Formulation: $\frac{\partial \overline{S_x}}{\partial x} = 0$, $\frac{\partial \overline{S_y}}{\partial y} \neq 0$ for $0 \le y \le \delta$
- <u>Viscous Shock-Layer</u> (VSL) Formulation : $\frac{\partial \overline{S_x}}{\partial x} = 0$, $\frac{\partial \overline{S_y}}{\partial y} \neq 0$ for $0 \le y \le \Delta_{shk}$ except for the body-normal momentum equation which is inviscid
- **<u>Parabolized Navier-Stokes</u>** (PNS) Formulation : $\frac{\partial \overline{S_x}}{\partial x} = 0$, $\frac{\partial \overline{S_y}}{\partial y} \neq 0$ for all y>0
- **Full Navier-Stokes** (FNS) Formulation : $\frac{\partial \overline{S_x}}{\partial x} + \frac{\partial \overline{S_y}}{\partial y} \neq 0$ for all y>0


ncreasing Order of Accuracy

GRASP Overview

- <u>General Reentry Aerothermodynamic Simulation Package</u> (GRASP) is a CFD packaged designed and administered by AeroTechnologies Inc
 - > Competitively priced compared to other CFD tools available on the market
 - Designed to run without the need for High Performance Computing (HPC) resources
 - Specially Optimized for high speed (Hypersonic) environments
 - Extensively Validated against CFD codes, Wind Tunnel Testing, and Flight Data


GRASP Overview

• <u>General Reentry Aerothermodynamic Simulation Package</u> (GRASP) consists of a <u>three-step</u> solution approach

GRASP Overview (Concluded)

- Simulates a batch-execution environment (Batch Loop) using
 - > Aerothermal codes designed for single-case executions
 - A Batch-List File containing a list of cases to run
 - Input files for each case created individually or
 - A number of individual input files and a corresponding Batch-List File created using the Create-Batch-Data (CBD) Code
 - Transparently does all needed file-management operations

CFD Tool Highlights

Baseline Integrated CFD Tools

• The Baseline GRASP (Ver. 1.5x2) includes

VSL Nose Code

- Axisymmetric Viscous Shock-Layer (VSL) solver for spherically-blunt nosetips
- Embedded inviscid solver for bow-shock-shape prediction
- > 3-D flowfield rotation for angle-of-attack effects
- Fast and efficient prediction of spherically-blunt nosetip flowfields

PNS Afterbody Code

- > 3-D Parabolized Navier-Stokes (PNS) solver for conical and 3-D RV shapes
- Fully-Implicit formulation with bow-shock fitting
- Fast and efficient prediction of 3-D afterbody flowfields
- Perfect-Gas and Equilibrium-Air gas models
- Laminar and turbulent flows

Baseline Integrated CFD Tools (Cont'd)

• FPNS Full-body Code

- > 3-D Full Navier-Stokes (FNS) solver for the nosetip region
- > 3-D Parabolized Navier-Stokes (PNS) solver for afterbody region
- Fully-Implicit formulation with bow-shock capturing
- Fast and efficient prediction of 3-D afterbody flowfields
- Perfect-Gas, Equilibrium-Air, and Nonequilibrium-Air, Nonequilibrium Carbon/Carbon-Phenolic in Air (C/CP-Air) gas models
- Laminar and turbulent Flows

• CBD (Create-Batch-Data) Code

- Uses a simple, master input
- Creates individual VSL/PNS input files and associated Batch List File for a user-specified set of

✓ Various combinations of freestream conditions along a trajectory

✓ 1962, 1976, and Day-of-Flight atmospheric conditions

Advanced CFD Tools

- Baseline GRASP 1.5x2 can be easily upgraded to include the following advanced hypersonic flowfield simulation tools
- Nonequilibrium FPNS Code for Plasma Predictions

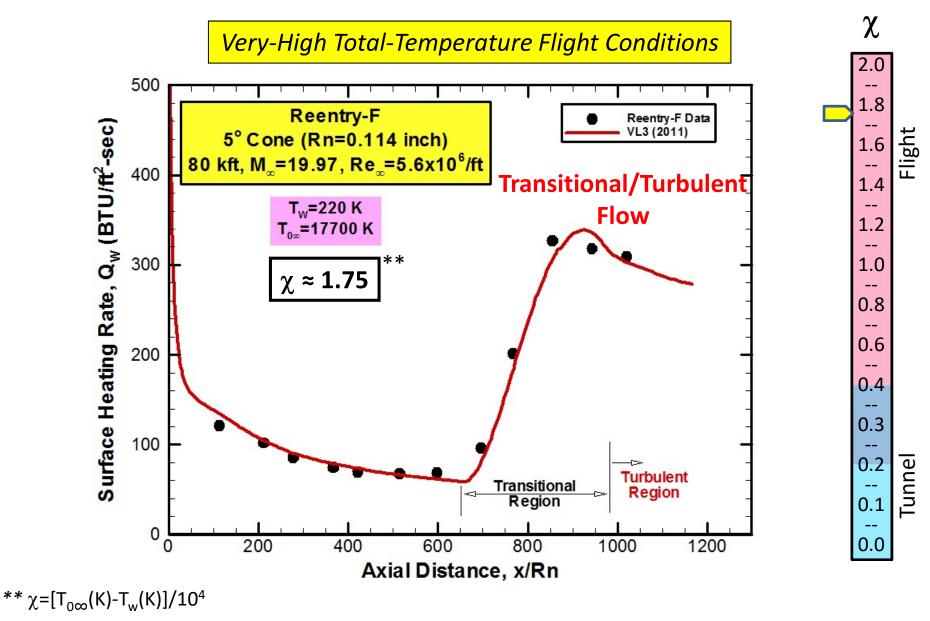
•

- Axisymmetric/3-D Nonequilibrium FPNS Code includes a Full Navier-Stokes (FNS) solver for the nosetip region
- Axisymmetric/3-D Nonequilibrium FPNS Code includes a Parabolized Navier-Stokes (PNS) solver for the afterbody region
- For simulations of Carbon and Carbon-Phenolic (CP) heatshields with alkaline impurities
- Fast and efficient prediction of 3-D afterbody flowfields
- Perfect-Gas, Equilibrium-Air, and Nonequilibrium-Air, Nonequilibrium C/CP-Air gas models
- Laminar and turbulent flow simulations with specialized algebraic and K-ω turbulence models

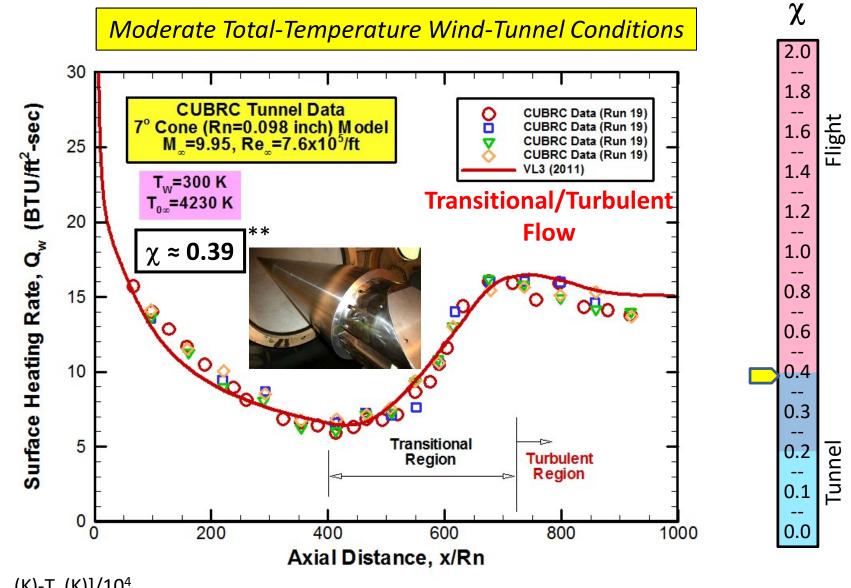
Advanced CFD Tools (Cont'd)

Multi-Block FNS code for Complex 3D Nose-to-Far-Wake Flowfield Simulations

- Axisymmetric/3-D Nonequilibrium Full Navier-Stokes (FNS) solver for forebody and wake regions
- Decomposes a large flowfield problem into multiple smaller flowfield blocks
- Block solutions done simultaneously (in parallel) on multiple cores of a modern Many-Core PC Workstation (such as a 16 core dual CPU PC)
- Perfect-Gas, Equilibrium-Air, and Nonequilibrium-Air, Nonequilibrium C/CP-Air gas models
- Laminar and turbulent flow simulations with specialized algebraic and K-ω turbulence models

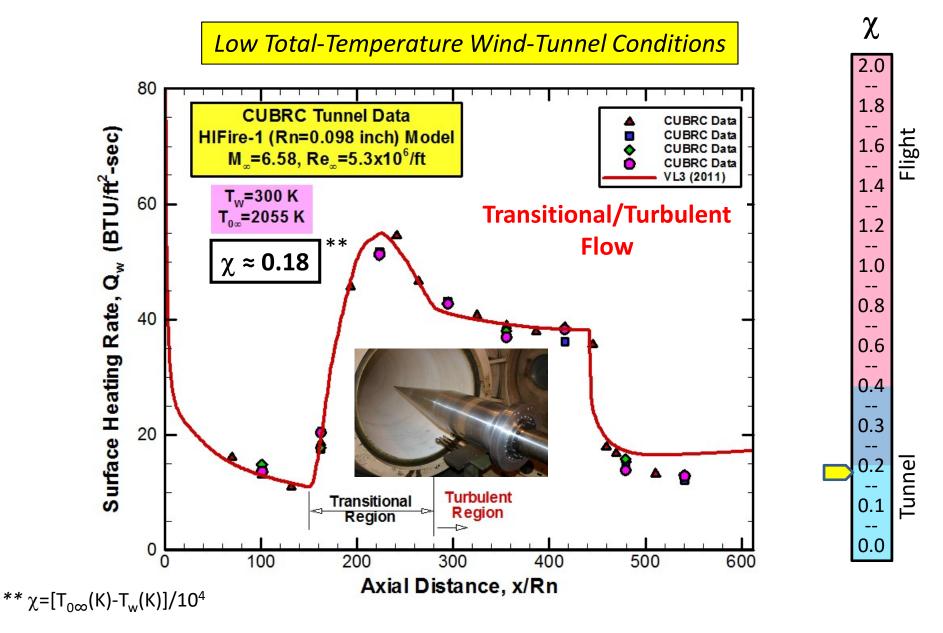

Computational Requirements

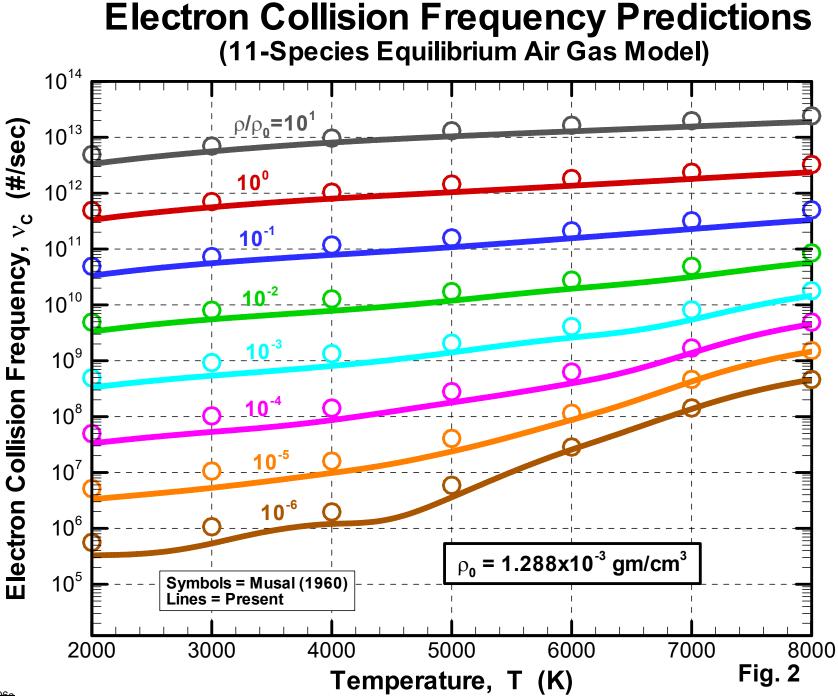
Computational Time Requirements


- GRASP is designed to run on as little as a single core with 4 gb of RAM
 - > Typical RV solution time is <1 hr
- Multicore processor computers allow for running multiple instances of GRASP on the same machine
 - Batching techniques allow for processing of large databases

Validation Examples

80-KFT REENTRY-F




CUBRC 7° CONE

** $\chi = [T_{0\infty}(K) - T_w(K)]/10^4$

CUBRC HIFIRE-1 7° CONE-CYLINDER

- Fig-006a Plasma: 9-3-2003

Sample PNS Input

PNS Input for 12° Sphere-Cone at M_{∞} =10 and Alt=0kft

	Sys12deg_m10h000ta00p0.pin - Notepad				
	File Edit Format View Help				
	M=10, Alt= 0 kft,	AoA= 0.0 deg, Trb. <	Sys12deg_m10h000ta00p0	~	
Grid Size	101	KMAX LMAX			
Gas Model	1	IGAS			
	0001	IDSPLY (I5)			
Skip-Print Controls	10	JPRT KPRT			
	ī	LPRT			
X-flow Grid Type	0001	IGRID (15) MAXITR (15)			
	0.0419948	MAXITR (15) RNOSE			
Nece Dedius Step	45.000000E+00	XEND (F15.0)			
Nose Radius, Step	1.0000000E-02 2.5000000E-01	DXMIN (F15.0) DXMAX (F15.0)			
Size & Convergence	5.0000000E+00	ERRDX (F15.0)		1	
	5.0000000E-02	ERFLW (F15.0)			
	1.0000000E+00 -10.0000000	OMGMAX (F15.0) FSMACH			
Freestream	0.0000000	ALTKFT			
	515.4585434	TINF			
Conditions	2105.5218649 0.0000000	PINF			
	0.0000000	ALPHA BETA			
Pitch-Plane Symm.	1	IPER			
Turbulence	1 0000000	ITRANS			
Turbulence	0.0000000	XTRANS 0.00000 0 NNCONE (15)		ר	In this example the 12° sphere-cone
Geometry	0002				
	0.7920883090000 0 0 0 0 0 0 0 0 0 1 1 1 200.0000000000 0.9781476000000 0.21255656200 0 0 0 0 0 0 0 0 0 0.792088309			00000000	shape is described using 12-coefficient
	200.00000000000000000000000000000000000	NPRNT (I5)	56200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 792	20883090000	
	0000002.000000 nn				piece-wise curvefit option
	0000010.000000 nn	ý			
Thermal Printout	0000020.000000 nn 0000040.000000 nn				
	0000060.000000 nn	y V			
Locations	0000080.000000 nn	V			
	0000100.000000 nný 0000120.000000 nný 0000140.000000 nný				
	0005 NTWLL (0:ADIAB., >1:SPEC. TEMP)				
		000.00000000			
Wall Temperature	1.6000000 3000.0000000 2.0000000 3000.0000000				
	54.5000000 3	000.00000000			
		000.0000000			
X-Flow Grid Distrib.	0001 0000	IXBDY (I5) MXBDY (I5)			
	EXTE	-00.00000000000000000000000000000000000			
Expanded Print	-0002	IEXPRT (I5)			
	2.50000000E-01 0000	DXBAR (F15.0) ICON (I5)			
	2.5000000E+01	ERRITR (F15.0)			
	0000	NTTB (I5)			OPTIONAL
Step-size &	0003	NDXMX (I5) 00 0000.5000 0000.1000			
	0050.0000 0000.50	00 0000.5000 0000.1000	X, ΔX_{max} , ω_{RHC}	, DXBAR	EXTENDED INPUT
Convergence Table		00 0000.5000 0000.1000			SECTION
Ref. Length & Area	1.59953403E+03 1.50393906E+02 9.		EFARA (I5) ,XMREF (215)		SECTION
Ref. Length & Area	0000	NSMZ3 (I5)	, which (LLS)		
	0.0000000E+00	EPSCRX (F15.0)			
	0002 0002	IDIFZ2 (215)			
				-1	
	¥.				
	للقر			<u> </u>	

Thank you